A Neural Architecture for Dialectal Arabic Segmentation
نویسندگان
چکیده
The automated processing of Arabic dialects is challenging due to the lack of spelling standards and the scarcity of annotated data and resources in general. Segmentation of words into their constituent tokens is an important processing step for natural language processing. In this paper, we show how a segmenter can be trained on only 350 annotated tweets using neural networks without any normalization or reliance on lexical features or linguistic resources. We deal with segmentation as a sequence labeling problem at the character level. We show experimentally that our model can rival state-of-the-art methods that heavily depend on additional resources.
منابع مشابه
Word Segmentation of Informal Arabic with Domain Adaptation
Segmentation of clitics has been shown to improve accuracy on a variety of Arabic NLP tasks. However, state-of-the-art Arabic word segmenters are either limited to formal Modern Standard Arabic, performing poorly on Arabic text featuring dialectal vocabulary and grammar, or rely on linguistic knowledge that is hand-tuned for each dialect. We extend an existing MSA segmenter with a simple domain...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملUnsupervised Word Segmentation Improves Dialectal Arabic to English Machine Translation
We demonstrate the feasibility of using unsupervised morphological segmentation for dialects of Arabic, which are poor in linguistics resources. Our experiments using a Qatari Arabic to English machine translation system show that unsupervised segmentation helps to improve the translation quality as compared to using no segmentation or to using ATB segmentation, which was especially designed fo...
متن کاملCharacter-Aware Neural Networks for Arabic Named Entity Recognition for Social Media
Named Entity Recognition (NER) is the task of classifying or labelling atomic elements in the text into categories such as Person, Location or Organisation. For Arabic language, recognizing named entities is a challenging task because of the complexity and the unique characteristics of this language. In addition, most of the previous work focuses on Modern Standard Arabic (MSA), however, recogn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017